Test 4 Applications of Integration and Discrete Random Variables

[This test contributes 6% towards the final year mark]

Name	:	Μ.	Ken	

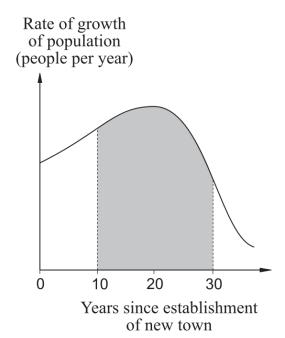
Score :	
(out of 42)	

- 40 minutes are allocated for this task.
- CAS and/or scientific calculators are permitted.
- No notes of ANY nature are permitted.
- Full marks may not be awarded to correct answers unless sufficient justification is given.
- Use the method specified (if any) in the question to show your working (otherwise, no marks awarded)

Do NOT turn over this page until you are instructed to do so.

1. [2 marks]

Describe, in words, what quantity is represented by the shaded area in the graph below.

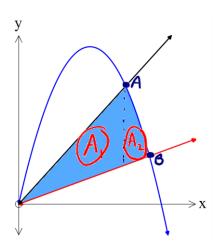


I change in population

The change in population of the new town between the 10th and 30th years since establishment. See 10th and 30th years

2. [5 marks]

The graph below shows the sketch of the curve y = 2x(6-x) and the lines y = x and y = 3x.



Determine the **exact** area of the shaded region.

From CAS, intersection points A (4.5, 13.5) and B (5.5, 5.5)

Shaded area =
$$\int_{0}^{4.5} 3x - x \, dx + \int_{4.5}^{5.5} 2x(6-x) - x \, dx$$

$$\int_{0}^{5.5} x \, dx + \int_{4.5}^{5.5} 2x(6-x) - x \, dx$$

Correct integration

Limits

/ subtracts
$$x$$
 from

 $3x$ for area A ,

 $=$
 5.5
 $2x$ dx +

 5.5
 $11z - 2x^2$ dx

/ subtracts x from

 $2x(6-x)$ for area A_2

$$= \left[\chi^{2} \right]_{0}^{4.5} + \left[\frac{11}{2} \chi^{2} - \frac{2}{3} \chi^{3} \right]_{4.5}^{5.5}$$

$$= (4.5^2 - 0^2) + (4 \times 5.5^2 - 3 \times 5.5^3) - (4 \times 5.5^2 - 3 \times 5.5^3)$$

3. [3 + 2 + 2 = 7 marks]

A petrol tank, when full, contains 36 litres of petrol. It develops a small hole which widens as time goes by. The rate at which fuel leaks out (in litres per day) is given by the expression:

$$0.009t^2 + 0.08t + 0.01$$

where t is the time in days. When t = 0 the tank is full.

$$V(10) - V(9) = 7.1 - 5.517$$

$$\left(\text{or } \int_{9}^{10} dV dt\right) = 1.583 L$$

$$\int \text{correct}$$
answer

(c) How much fuel is left in the tank after 15 days?

36 - V(15) = 36 - 19.275= 16.725 L WH I calculated had used after 15 days I submacks from 36 to determine renaining had 4. [4 + 2 + 2 = 8 marks]

An object is thrown vertically upward from a point O (at ground level) with velocity 49 ms⁻¹. The acceleration due to gravity is 9.8 ms⁻² towards the centre of the Earth.

Determine:

(a) the height above O at any time t,

$$\alpha(t) = -9.8$$
 $V(t) = \int -9.8 dt = -9.8 t + C$

Lonstants of integration started and determined but $V(0) = 49 = 0$ $C = 49$
 $V(t) = 49 - 9.8 t$
 $V(t) = 49 - 9.8 t$
 $V(t) = 49 + 4.9 + 2 + k$

but $k = 0$ since $\chi(0) = 0$
 $\chi(t) = 49 + 4.9 + 2 + k$
 $\chi(t) = 49 + 4.9 + 2 + k$
 $\chi(t) = 49 + 4.9 + 2 + k$

(b) the time(s), correct to 3 decimal places, the object is 15 metres above the ground,

i.e.
$$15 = 49t - 4.9t^2$$
 /sets up egn
Solving (CAS) gives $t = 0.316...$ or $t = 9.683...$ /solves for
i.e. After 0.316s and 9.684s (3 d.p.)

(c) the maximum height reached.

max height she
$$v=0$$

i.e. she $t=\frac{49}{9.8}=5$ determines time

$$\chi(5) = 49(5) - 4.9(5)^{2}$$

$$= 122.5 \text{ The determines max}$$
height

5.
$$[3 + 4 + 3 = 10 \text{ marks}]$$

The discrete random variable X can only take the values 0, 1, 2, 3, 4, 5. The probability distribution of X is given by the following:

$$P(X = 0) = P(X = 1) = P(X = 2) = a$$

 $P(X = 3) = P(X = 4) = P(X = 5) = b$ where a and b are constants.
 $P(X \ge 2) = 3P(X < 2)$

(a) Determine the values of a and b.

$$3a + 3b = 1$$
 $a + 3b = 3(2a)$

Solving (CAD) $a = \frac{1}{8}$, $b = \frac{5}{24}$

Solves for a b correctly

(b) Show that the expectation of X is $\frac{23}{8}$ and determine the exact variance of X .

exact

$$E(X) = 0 \times \frac{1}{8} + 1 \times \frac{1}{8} + 2 \times \frac{1}{8} + 3 \times \frac{1}{24} + 4 \times \frac{5}{24} + 5 \times \frac{5}{24}$$

$$= \frac{3}{8} + \frac{60}{24}$$

$$= \frac{23}{8} \qquad \text{ factorines } E(X^2) \text{ correctly} \qquad \text{ subtracts}$$

$$V(X) = 0 \times \frac{1}{8} + 1 \times \frac{1}{8} + 2 \times \frac{1}{8} + 3 \times \frac{5}{24} + 4 \times \frac{5}{24} + 5 \times \frac{5}{24} - \left(\frac{23}{8}\right)^2$$

$$= \frac{533}{192} \qquad \text{ determines } V(X) \text{ correctly}$$

(c) Determine the exact probability that the sum of two independent observations from this distribution exceeds 7.

distribution exceeds 7.

i.e. 5,5

(
$$\frac{5}{24}$$
)²

/ considers

 $5,4 (a 4,5)$
 $2 \times (\frac{5}{24})^2$

orrectly

All possible

 $5,3 (a 3,5)$
 $2 \times (\frac{5}{24})^2$
 $4,4$

($\frac{5}{24}$)²

P(sum > 7) = $6 \times (\frac{5}{24})^2 = \frac{150}{576} = \frac{25}{96}$

were addition

rule L. calculate

Page 6 of 8

conect probability

6. [3+2+2+3=10 marks]

On a long train journey, a statistician is invited by a gambler to play a dice game. The game uses two ordinary dice which the statistician is to throw.

If the total score is 12, the statistician is paid \$6 by the gambler. If the total score is 8, the statistician is paid \$3 by the gambler. However, if both or either dice show a 1, the statistician pays the gambler \$2. Otherwise, no money changes hands.

Let X be the amount paid to the statistician by the gambler.

(a) Complete the table below.

•	Inverp	7					
х	- 2 loss as	0 salah	nus from 1 to	6			
P(X=x)	1/36	9/36	5/36	36			
a she for $x = -2$ 3 h connect							

(b) Explain why the table in part (a) describes a probability distribution for the discrete random variable X.

$$\Sigma p = 1$$
 / sum of probs = 1
and $0 \le p \le 1$ / each prob between 0 and 1

(c) Show that, if the statistician played the game 100 times, his expected loss would be \$2.78, to the nearest cent.

$$E(X) = (-2 \times \frac{11}{36}) + (0 \times \frac{15}{36}) + (3 \times \frac{5}{36}) + (6 \times \frac{1}{36})$$

$$= -0.027$$
 determines $E(X)$ correctly.

In 100 games he would lose $100 \times (-0.027) = -2.7$
which is a loss of \$2.78 (24p) / multiplies $E(X)$ by (00 to get required armer

(d) Find the amount, \$a, that the \$6 would have to be changed to in order to make the game unbiased.

This page has been left blank intentionally